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Abstract

In this paper, the concept of basis matrix of B-splines
is presented. A general matrix representation, which
results in an explicitly recursive matrix formula, for
nonuniform B-spline curves of an arbitrary degree is also
presented by means of Toeplitz matrix. New recursive
matrix representations for uniform B-spline curves and
Bezier ones of an arbitrary degree are obtained as
special cases of that for nonuniform B-spline curves. The
recursive formula for basis matrix can be substituted for
de Boor-Cox′s one for B-splines, and it has better time
complexity than de Boor-Cox’s formula when used for
conversion and computation of B-spline curves and
surfaces between different CAD systems. Finally, some
applications of the matrix representations are given in the
paper.

1. Introduction

Matrix theory and its algorithms are very useful in
computer-aided geometric design, since matrix is an
important and basic tool in mathmatics. Matrix formulae
of B-spline curves and surfaces have advantages of both
simple computation of points on curves or surfaces and
their derivatives, and easy analysis of the geometric
properties of B-spline curves and surfaces. In 1982,
Chang [1] gave the matrix formula of Bezier curves. Cohen
and Riesenfeld [5] gave those for not only Bezier curves but
also uniform B-splines of an arbitrary degree in 1982. In
1990, Choi, Yoo and Lee[2] proposed a procedure to
symbolically evaluate a matrix for a B-spline curve using
Boehm′s knot-insertion algorithm [14]. Grabowski and Li [3]

in 1992, Wang, Sun and Qin [4] in 1993 got the matrix by

the analogously approaches instead of an explicit formula,
respectively. So far a general matrix formula for
nonuniform B-spline curves has not been found, although
the matrix representation can be gotten by algorithms.

In this paper, recursive matrix formulae for B-splines
and Bezier curves are presented, and some applications
are given in the paper, too.

The organization of this paper is as follows: Section 2
describes how to represent de Boor-Cox formula for B-
splines using Toeplitz matrix[7]. In the 3rd section, general
matrices for B-spline curves are proposed. New recursive
matrix formulae for representing uniform B-splines and
Bezier curves are obtained as special cases of the basis
matrix formula of nonuniform B-spline curves in Section
4. Some applications are shown in Section 5. Finally
conclusions are given in Section 6.

2. Representing de Boor-Cox formula by
Toeplitz matrix

First of all, let us look at how to represent a polynomial
and a product of two polynomials using Toeplitz matrix[7].
Then Toeplitz matrix representation of de Boor-Cox
formula for B-splines will be introduced.

2.1 Toeplitz matrix

The Toeplitz matrix is one whose elements on any line
parallel to the main diagonal are all equal. A band
Toeplitz matrix is defined as follows:
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For example, a special Toeplitz matrix, or a lower
triangular matrix
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can be constructed by the coefficients of a polynomial f(x)
= a0+a1x+a2x

2+...+an-1x
n-1 (an-1 ≠ 0).

2.2 Representing the product of two polynomials
using Toeplitz matrix

Let g(x) = c0+c1x+c2x
2+...+cm-1x

m-1 (cm-1 ≠ 0),
  q(x) = d0+d1x+d2x

2+...+dn-1x
n-1 (dn-1 ≠ 0).

One can obtain
f(x) = g(x)q(x)
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where [ ]2nm2 xxx1 −+= LX . The above is the

Toeplitz matrix representation of the product of two
polynomials.

2.3 Representing de Boor-Cox formula using
Toeplitz matrix

The B-spline first introduced by Schoenberg[9] has been
used in various fields such as computer-aided design,
computer graphics, numerical analysis and so on. The
normalized local support B-spline basis function of degree
k-1 is defined by the following de Boor- Cox recursive

formula[6,10]:
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with the convention 0/0=0. By means of basis translation
from B-spline to power basis[11,12] Bj,k-1(u) can be
represented as follows:
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Thus, Eq. (1) can be rewritten by Toeplitz matrix:
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3. General matrices for nonuniform B-spline
curves and surfaces

B-spline basis functions Bj,k(t) are piecewise
polynomials of degree k-1. If t∈ [ti,ti+1), ti < ti+1, there are
k B-spline basis functions of degree k-1 that are nonzero:
Bj,k(t),  j=(i-k+1),(i-k+2),..., i. They can be represented
in a matrix equation as follows:
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tj are the knots.
Let Vj be the control vertices of a B-spline curve. The

B-spline curve segment
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where ),[,)()( 10u   ttttu  i1ii ∈−−= + . Mk(i) is

referred to as the ith basis matrix of B-spline basis
functions of degree k-1.

3.1 Recursive formula for basis matrices of B-
splines of degree k-1

Theorem 1  The ith basis matrix Mk(i) of B-spline
basis functions of degree k-1 can be obtained by a
recursive equation as follows:
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Proof.  Substituting Eq. (2) into Eq.(3) yields:
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Notice that h1,j-1 = -d1,j , h0,j-1 = 1-d0, j , and M1 (i)=[1].
Thus, Eq. (5) holds.  �

Eq. (5) can be regarded as a recursive definition of
basis matrices. It can be used for both analysis of
properties of NURBS curves and surfaces, and numerical
or symbolic computation of NURBS curves and surfaces.

3.2 Examples of symbolic computation

Using Eq. (5) for the symbolic computation, when
)()( 1 iii ttttu −−= +  ∈[0, 1) one can easily obtain the

following basis matrices:
M1 (i) = [1],
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where
  m3, 2 = - m2, 2 /3 - m3, 3 - (ti+1 - ti)

2/[( ti+2 - ti)( ti+2 - ti-1)],
  m i, j = element in row i, column j .

4. Special cases of basis matrices

It is well known that a B-spline curve with the knots,
between which the spacing is equal, is referred to as a
uniform B-spline curve; and a B-spline curve with the

knot vector, 
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regarded as a Bezier curve. Analogously, the basis
matrices for uniform B-spline curves and Bezier curves
can be obtained by Eq. (5) using the corresponding knot
vectors.

4.1 Basis matrices of uniform B-splines

For uniform B-spline curves and surfaces, the spacing
between the knots is equal, say 1. Thus, one has
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Instituting Eq. (6) into Eq. (5), one can get:
Theorem 2  The basis matrices of uniform B-

splines can be represented by the following recursive
formula:
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Unlike the basis matrices of nonuniform B-splines, the
basis matrices of uniform B-splines of degree k-1 are
independent of ti.

Using equation (7) recursively step by step, one can
also obtain the following matrix:
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Both Eqs. (7) and (8) can be used to calculate the basis
matrices of uniform B-splines. Several examples of basis
matrices for uniform B-splines are given as follows:
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4.2 Basis matrices for Bezier curves

Suppose that the knot vector of a B-spline curve of
degree k-1 is as follows:
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Substituting Eq.(9) into Eq. (5) , one can obtain:
Theorem 3  The basis matrices of Bezier curves can

be represented by the following recursive formula:
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Like the basis matrices of uniform B-splines, the basis
matrices of Bezier curves of degree k-1 are independent of
ti.

Using Eq. (10) recursively step by step, one can also
obtain the following matrix for Bezier curves easily:
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M k is a lower triangular n×n matrix.
Both Eqs. (10) and (11) can be used to calculate the

basis matrices of Bezier curves. Several examples of the
basis matrices for Bezier curves are given as follows:
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5. Applications

There are many applications of the basis matrices in
practice. Some of them are given in this section.

5.1 Computation of derivatives of nonuniform B-
spline curves

Assume there is a nonuniform B-spline curve of degree
k-1
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where derivatives, or d n (U k)/dun, can be easily computed,
for instance, dU k/du = [0  1  2u  ...  (k-1)uk-2].

5.2 Computation of derivatives of NURBS curves

For an NURBS curve of degree k-1
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The derivatives of an NURBS curve with respect to u can
be easily obtained since the basis matrixes are
independent of u.
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Frequently used are the first and the second derivatives of
NURBS curves:
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5.3 Degree raising for nonuniform B-spline curves

Degree raising for nonuniform B-spline curves is a
common technique in CAGD. The basis matrix of B-
splines can be used for degree raising of B-spline curves.

After its degree is elevated by 1, a segment of B-spline
curve of degree k-1 defined by Eq.(12) can be re-written
as follows:
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Thus, one can obtain the control vertices for the degree-
raised curve:
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Suppose that there is a B-spline curve of degree k-1
with control vertices Vi, (i=0, 1, …, n) defined over a knot
vector
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where s1 + s2 + L + sm = n-k+1. In order for degree
raising of the whole curve by 1, the multiplicity of each
interior knot has to be added by 1 using a knot-insertion
algorithm[8,13,17], so that the knot vector becomes as
follows:
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Then, a B-spline curve of degree k can be obtained with
degree raising of all the segments of the curve using
Eq.(14). This idea for degree raising of B-splines is
feasible, but it is less efficient than the elegant method for
degree raising of B-splines in [13] and [17].

5.4 Degree reduction of B-spline curves

Degree reduction of B-spline curves is a difficult
problem, since generally a B-spline curve of degree k can
not be precisely represented by a curve of degree k-1. Of
course, it can be approached by a B-spline curve of a less
degree. One can obtain its least square solution of this
problem for a segment of B-spline curve using Eq.(13)
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Similarly, one can obtain the least square solution of this



problem for a whole B-spline curve if combining knot
removal [15,16] ( omitted here because of the limited space).

6. Conclusions

By means of the concept of the basis matrix proposed
in the paper, the matrix representations of nonuniform
and uniform B-splines and Bezier curves can be unified
by a recursive formula. It is shown that the matrix
representations for uniform B-splines and Bezier curves
can be regarded as special cases of the basis matrix of
nonuniform B-splines. Like de Boor-Cox recursive
definition of B-splines, the basis matrices of B-splines can
be defined by Eq.(5), too. With regard to B-spline surfaces,
the basis matrices can be used for the surfaces in the same
way as B-spline curves. The recursive basis matrix
formula, or Eq.(5), can be substituted for the de Boor-Cox

recursive function when used for computation of B-spline
curves and surfaces.

In fact, the general matrix formula of nonuniform B-
splines of an arbitrary degree, or Eq.(5), can be used both
for symbolic or numerical computation of NURBS curves
and surfaces, and for theoretical analysis of properties of
NURBS curves and surfaces. In fact, the recursive basis-
matrix formula, or Eq. (5), for nonuniform B-splines of an
arbitrary degree is more efficient than the symbolic
approach in [2] and the numerical algorithm in [3] in
numerical evaluation. Assume that the execution times T
satisfy[2] Taddition ≅ Tsubtraction, Tmultiplication ≅ Tdivision and
Tmultiplication ≅1.12 Taddition. The comparison of the three
methods for the basis matrices of nonuniform B-splines of
degree k-1 can be made as shown in Table 1.

References

[1] G. Chang. Matrix foundation of Bezier technique.
Computer-Aided Design, 14(6):354-350, 1982.

[2] B. K. Choi, W. S. Yoo & C. S. Lee. Matrix representation
for NURB curves and surfaces. Computer-Aided Design,
22(4):235-240, 1990.

[3] H. Grabowski & X. Li, Coefficient formula and matrix of
nonuniform B-spline functions. Computer-Aided Design,
24(12):637-642, 1992.

[4] X. Wang, J. Sun & Kaihuai Qin. Symbolic matrix
representation of NURBS and its applications. Chinese
Journal of Computers, 16(1):29-34, 1993 (in Chinese).

[5] E. Cohen & R. F. Riesenfeld. General matrix
representations for Bezier and B-spline curves.
Computers in Industry, 3:9-15, 1982.

[6] C. de Boor. On calculating with B-splines. J. Approx.
Theory, 6:50-62, 1972.

[7] H. Vidom. Toeplitz matrices, in: I. Hirschmann (ed.),
Studies in Real and Complex Analysis. MAA Studies in
Mathematics 3, 1965.

[8] Kaihuai Qin, Y Guan. Two algorithms for inserting knots
into B-spline curves, Chinese Journal of Computers,

20(6):557-561, 1997 (in Chinese).
[9] I. J. Schoenberg. Contributions to the problem of

approximation of equidistant data by analytic functions.
Quart. Appl. Math., 4(45-99):112-141, 1946.

[10] M. G. Cox. The numerical evaluation of B-splines. J. Inst.
Math. & Applic., 10:134-149, 1972.

[11] C. de Boor. Practical Guide to Splines. Springer-Verlag,
1978.

[12] L. Schumaker. Spline Functions: Basic Theory. John
Wiley & Sons, New York, 1981.

[13] Kaihuai Qin. A new algorithm for degree-raising of
nonuniform B-spline curves. Chinese Journal of
Computers, 19(7):537 ~542, 1996 (in Chinese).

[14] W. Boehm. Inserting new knots into B-spline curves.
Computer-Aided Design, 12(4):199-201, 1980.

[15] M. Eck & J. Hadenfeld. Knot removal for B-spline curves.
CAGD, 12(3):259-262, 1995.

[16] L. L. Schumaker & S. S. Stanley. Shape-preserving knot
removal. CAGD, 13(9): 851-872, 1996.

[17] Kaihuai Qin. A matrix method for degree raising of B-
spline curves. Science in China (Series E). 40(1):71-81,
1997.

Table 1  Comparison of three methods
An arbitrary order (k) k = 4

Tmultiplication Taddition Tmultiplication Taddition Sum total
(≅Taddition)

%

Choi et al. [2] 8k2(4k-4)/3 4k2(4k-4)/3 10752 5376 17418 12013
Grabowski & Li[3] 2k3-3k2+k (6k2-9k+3)k/2 84 126 220 152
The new method (4k2-3k-1)k/3 (4k2-3k-1)k/3+1 68 69 145 100


